Combining modeling and measurements to control the AC losses in coated conductors

Francesco Grilli
Steve Ashworth
Los Alamos National Laboratory
Superconductivity Technology Center
\$200k 2005

AC losses are a problem

- Changing field and/or current dissipates energy in coated conductors
- □ Need to remove this energy (heat) by refrigeration
 - Economic problem
 - Engineering problem
- □ Losses are significantly higher than we would like
- □ In particular
 - Losses due to ac fields perpendicular to tape face
- Need to 'develop' the conductor
 - Simply increasing Ic will not do it

eg Coil: 10km of tape 10% in perpendicular field of 10mT

There are techniques for reducing ac losses

- □ Reduce losses at both the conductor and the coil level
- □ Numerical simulations are a reliable and powerful tool to help us do this
- Need to couple with experiment
- □ LANL has implemented an integrated numerical and experimental program unique in the US

Outline

- Why numerical models?
- ☐ We have combined modeling and measurements in order to understand and reduce ac losses
 - Standard' individual tapes
 - A method for loss reduction on individual tapes
 - Assemblies of tapes (vertical stack, coils)
- ☐ Chosen to work with a commercial FEM package (FLUX3D)
 - Allows easy dissemination of expertise
 - Building from verified package
 - Efficient use of resources

Numerical models are more realistic than analytical

- Evaluation of ac losses before the implementation of SC devices
- ☐ Simplest method: analytical models
 - 1. Inaccurate description of V-I characteristics (Critical State Model)
 - 2. Simple geometries
 - 3. Individual tapes or infinite number of tapes
- ☐ Finite Element Method (FEM):
 - 1. Smooth V-I characteristics
 - 2. Non-constant Jc, e.g. Jc(B), Jc(x,y,z)
 - 3. More realistic geometries
 - 4. Interaction between finite number of tapes

FEM used successfully for BSCCO tapes

□ Solves Maxwell's equations for transient problems

- Geometry discretized into a grid of elements
- Equations solved at every point of the grid
- Computation of electromagnetic quantities

□ Superconductors' behavior

- non-linear E-J power-law: E(J)=Ec (J/Jc)ⁿ
- Jc(B), Jc(x,y,z)

How we pass from reality to model

Where are the FEM people?

- □ Expertise previously only overseas
 - Yokohama National University, Japan
 - Swiss Federal Institute of Technology Lausanne,
 Switzerland
 - University of Southampton, UK
- ☐ Little previous effort in USA
- □ At LANL powerful combination of experimental and modeling expertise

Magnetic losses of individual tapes - characteristics

- Analytical model and FEM (const. Jc)
 - P~B⁴ for fields below penetration
- Experimental results on varied samples
 - lower slope, typically 3-3.6

Los Alamos

Magnetic losses of individual tapes - characteristics

- Analytical model and FEM (const. Jc)
 - P~B⁴ for fields below penetration
- Experimental results on varied samples
 - lower slope, typically 3-3.6
- Hypothesis
 - non-uniform Jc across tape
- Test
 - FEM with Jc(x) agree with experiments
 - DC critical current measurements

Los Alamos

Magnetic losses of individual tapes - characteristics

Analytical model and FEM (const. Jc)

- P~B⁴ for fields below penetration
- Experimental results on varied samples
 - lower slope, typically 3-3.6
- Hypothesis
 - non-uniform Jc across tape
- Test
 - FEM with Jc(x) agree with experiments
 - DC critical current measurements
- ☐ Conclusions:
 - Tapes are not uniform
 - FEM works

Los Alamos

Reduce losses of individual tapes by filaments and cross cuts

□ Losses inversely proportional to the square of the width Multifilamentary tapes ☐ The filaments must experience the same electromagnetic environment → transposition...not easy in practice! ☐ Alternative way: striate the superconductor into filaments AND periodically break the filaments with transversal cross-cuts ☐ Magnetic flux can enter between the filaments filaments Cross cut

Flux can travel many cm from a cross-cut during an ac cycle

Experiment

- 100 Hz perpendicular ac field, 10 filaments
- Flux can only enter at the cross-cut
- Measure flux between filaments
- Function of distance from entry point
- On the left of the cross-cut no flux in the sample
- ☐ In the filament region
 - Flux moves at least 10 cm in a cycle
- □ 5 cuts/m sufficient for loss reduction at 60 Hz

FEM analysis confirms the effect

Normal metal bridge allows transport current

- Necessary to bridge the cross-cuts with normal metal
- Two types of experimental bridge
 - indium solder $(50\mu m)$
 - indium+ 25μm copper
- These bridges produce a resistance of 4 $\mu\Omega$ for a 4 mm wide tape
- ☐ This produces ohmic loss
- The ohmic loss is significantly higher than the ac transport loss in the superconductor
- □ Increase in ohmic losses is outweighed by decrease in magnetic losses

Total losses significantly reduced

☐ Magnetic losses tape 10mm

Total losses significantly reduced

- Magnetic losses tape 10mm
- □ 10 filaments + 5 crosscuts/m
 - 2 orders of magnitude reduction

Total losses significantly reduced

- Magnetic losses tape 10mm
- □ 10 filaments + 5 crosscuts/m
 - 2 orders of magnitude reduction
- ☐ Transport current: RI² contribution of the bridge

Even greater loss reduction is possible

Possible further improvements

- reducing the resistivity of the cross-cut to $0.4\mu\Omega$ cm (FEM)

Even greater loss reduction is possible

- Possible further improvements
 - reducing the resistivity of the cross-cut to $0.4\mu\Omega$ cm (FEM)
 - 25 filaments
- ☐ Even better at higher frequencies (ohmic loss is frequency independent)

Summary for individual tapes

☐ We have

- Demonstrated a loss reduction of nearly 2 orders of magnitude (100 A, 10mm wide, 30mT peak)
- Indicated a way for loss reduction of 2 to 3 orders of magnitude (100 A, 10mm wide, 30mT peak)

Twisting requirement relaxed

- ☐ Still need a twist
 - Zero net flux threading superconductor
 - Otherwise eddy currents generated
- □ Previously twist pitch ~cm
 - Not easy in tapes
- □ Now twist once every turn only (also suggested by Sumption et al., proceedings of Applied Superconductivity Conference 2004)
- □ High symmetry coils no twist required

Manufacturability is good

- □ Introduced a technique for cutting long samples into many filaments in a short time
- Mechanical scribing with microtome blades
 - Continuous process
 - Low additional cost
 - 25 filaments, 10 mm wide
 - Speed ~ 1 meter/min
 - Details in 'Wire Session' talk by Gibbons, Matias and Ashworth

Beyond individual tapes

- ☐ So far we have considered loss reduction in individual tapes
- ☐ Real devices are assemblies of several tapes
- □ Electromagnetic interaction makes things more complicated

Stacking multiple tapes changes losses

- Analytical models (for infinite stacks)
 - Applied field losses decrease with decreasing separation
 - Transport current losses increase with decreasing separation

- ☐ Is there an optimum separation with reduced losses?
 - Analytical models: no, transport losses dominate
 - What does FEM say?

FEM simulations of a 8-tape stack

FEM indicates losses per tape decrease significantly as tape separation decreases

■ 8 individual tapes

FEM indicates losses per tape decrease significantly as tape separation decreases

- 8 individual tapes
- ☐ Stack 1 mm separation
 - Loss reduction factor 10

FEM indicates losses per tape decrease significantly as tape separation decreases

- 8 individual tapes
- ☐ Stack 1 mm separation
 - Loss reduction factor 10
- ☐ Stack 0.1 mm separation
 - Loss reduction factor 30

FEM and measurements show losses per tape decrease significantly as number of tapes increases

FEM indicates transport losses increase moderately as separation decreases

- □ Stack losses higher than the sum of isolated tapes
 - Factor 6-7 for 8-tape stack
 - Analytical models > 100
- ☐ FEM: loss increase not unreasonable and outweighed by reduction in magnetic losses

Measurements indicate no significant increase in transport losses

- □ No significant increase for 4 tapes, 0.2 mm separation
- □ Probably due to nonconstant Jc(x)
- □ Not yet understood

FEM & measurements: yes, we can reduce losses

- □ Applied magnetic field
 - Loss <u>decrease</u> factor 10-30 for < 1 mm separation
- ☐ Transport current
 - Loss increase factor 6-7 for < 1 mm separation
- □ There is a window of reduced losses for current and field applications

Plans and Goals FY 2005: from 2004 presentation

1. Not to present this talk to you next year!

- Present it in "wire session"
- > AC loss reduction a central part of coated conductor development

2. Develop and test conductor architecture

- Capable of carrying 100A/cm width ac current in 100mT ac field without quenching (present limit is 10mT)
- Capable of carrying 100A/cm width ac current in 10mT ac field with ac losses TWO orders of magnitude below present values.

3. Develop and test a conductor production technique (lengths > 10cm)

- Capable of carrying 100A/cm width ac current in greater than 10mT ac field without quenching.
- Capable of carrying 100A/cm width ac current in 10mT ac field with ac losses ONE order of magnitude below present values.

Performance

- 1. Not to present this talk to you next year! (half achieved!)
 - ✓ Present it in "wire session"
 - ✓ AC loss reduction a central part of coated conductor development
- 2. Develop and test conductor architecture
 - ✓ Capable of carrying 100A/cm width ac current in 100mT ac field without quenching (present limit is 10mT) (see 'wire' talk)
 - ✓ Capable of carrying 100A/cm width ac current ir 30mT ac field with ac losses 1/100 of 2004 values.
- 3. Develop and test a conductor production technique (lengths > 10cm)
 - ✓ Capable of carrying 100A/cm width ac current in greater than 10mT ac field without quenching. (see 'wire' talk)
 - ✓ Capable of carrying 100A/cm width ac current in 30mT c field with ac losses (1/20 of 2004 values.

Results

- ☐ Introduced loss modeling capability to US
- ☐ Integrated modeling and measurement
- □ Developed a low loss "cross cut" conductor based on structure invented at LANL
- □ Made and measured the cross cut conductor in >10cm length
 - Losses 5% of 'bare' conductor
- ☐ Showed possibility of cross cut conductor with losses <1%
- ☐ Introduced a simple technique for making multifilament CC
 - Made multifilament tapes >50cm long at 1m/minute
- ☐ Used modeling to understand losses in 'real' CC (Jc vary across tape)
- ☐ Used ac loss "signature" to aid in CC manufacture

Plans and Goals 2006

- □ Develop and test conductors ~10cm length having losses <0.1W/m when carrying 100A in 0.1T ac fields
 - Move up from ~10mT to more relevant fields
- □ Develop a route to conductors having losses <1W/m in ac fields to 1T
 - A real 'stretch' goal, but needed.
 - Will depend on maintaining Jc at 1T fields as well as low loss structure
- ☐ Develop technique for calculating losses in eg coils
 - How do we calculate losses in a ~1m scale coil based on hts films ~10-6m thick
 - Merge macro and micro scale calculations.
 - Work with software developer
- ☐ Further extend and validate models
 - Check against experiment
 - In particular examine interaction of transport current
- Using ac loss to assess tape quality
 - Non-uniform Jc across tape, how much information can we obtain?

Research Integration

- Coated conductor materials in collaboration with
 - LANL IBAD team
 - IGC-Superpower
 - American Superconductor Corporation
 - ITN
- DARPA funded program
 - American Superconductor Corporation/Office of Naval Research
- □ Air Force funded STTR Collaboration
 - Long Electromagnetic Industries
- □ EPFL Switzerland (two joint papers)
- □ US-Japan AC Loss collaboration (and successor)
- Patent

Results

- ☐ Introduced loss modeling capability to US
- ☐ Integrated modeling and measurement
- □ Developed a low loss "cross cut" conductor based on structure invented at LANL
- □ Made and measured the cross cut conductor in >10cm length
 - Losses 5% of 'bare' conductor
- ☐ Showed possibility of cross cut conductor with losses <1%
- ☐ Introduced a simple technique for making multifilament CC
 - Made multifilament tapes >50cm long at 1m/minute
- ☐ Used modeling to understand losses in 'real' CC (Jc vary across tape)
- ☐ Used ac loss "signature" to aid in CC manufacture

